Eigenvalues for systems of fractional $p$-Laplacians

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of Transmission Graph Laplacians

The standard notion of the Laplacian of a graph is generalized to the setting of a graph with the extra structure of a “transmission” system. A transmission system is a mathematical representation of a means of transmitting (multi-parameter) data along directed edges from vertex to vertex. The associated transmission graph Laplacian is shown to have many of the former properties of the classica...

متن کامل

Stability of variational eigenvalues for the fractional p–Laplacian

By virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm.

متن کامل

Eigenvalues of Collapsing Domains and Drift Laplacians

By introducing a weight function to the Laplace operator, Bakry and Émery defined the “drift Laplacian” to study diffusion processes. Our first main result is that, given a Bakry–Émery manifold, there is a naturally associated family of graphs whose eigenvalues converge to the eigenvalues of the drift Laplacian as the graphs collapse to the manifold. Applications of this result include a new re...

متن کامل

A Majorization Bound for the Eigenvalues of Some Graph Laplacians

Grone and Merris [5] conjectured that the Laplacian spectrum of a graph is majorized by its conjugate vertex degree sequence. In this paper, we prove that this conjecture holds for a class of graphs including trees. We also show that this conjecture and its generalization to graphs with Dirichlet boundary conditions are equivalent.

متن کامل

Fractional Laplacians, splines, wavelets, and fractal processes

Our aim is to propose a multi-dimensional operator framework that provides a bridge between approximation theory (in particular, the construction of polyharmonic splines and wavelets) and the investigation of self-similar stochastic processes. Our investigation starts with the identification of the linear differential operators that are translation-, scaleand rotation-invariant; these are the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2018

ISSN: 0035-7596

DOI: 10.1216/rmj-2018-48-4-1077